Dekomposisi Penerimaan Pajak di Indonesia untuk Meningkatkan Peramalan Estimasi Basis Pajak
DOI:
10.33395/owner.v9i1.2388Abstract
This study aims to compare tax revenue forecasting model on nett tax revenue in contrast to its tax baseline component. We identifies tax baseline component that reflecting natural economic growth through interviews with Indonesia's Directorate General of Taxes (DGT). We employ ARIMA, ETS, linear model, and forecast combination to forecast both the baseline and nett tax revenue data using monthly national time series data from 2021-2023. By comparing Mean Absolute Percentage Error (MAPE), we determine the most accurate model and dataset combination for tax revenue forecasting. We finds that forecast from linear model in baseline tax revenue has the best MAPE of 5,17% and perform better than forecast combination as the best model from nett tax revenue with 8,30% MAPE. This study offers a novel perspective on tax revenue forecasting by employing a micro approach that focused on identifying baseline component from overall tax revenue. It has the potential to more comprehensive understanding of tax revenue behavior and lead to more improved fiscal control in Indonesia.
Downloads
Plum-X Analityc
References
Baksay, G., & Kiss, G. (2023). Fiscal Sustainability in Focus. Public Finance Quarterly= Pénzügyi …. Retrieved from https://unipub.lib.uni-corvinus.hu/8548/
Bates, J. M., & Granger, C. W. (1969). The combination of forecasts. Journal of The Operational Research Society, 20(4), 451-468.
Cheng, C.-H., & Wei, L.-Y. (2014). A novel time-series model based on empirical mode decomposition for forecasting TAIEX. Economic Modelling, 36, 136-141. doi:https://doi.org/10.1016/j.econmod.2013.09.033
Gyamfi, E. N., Sarpong, F. A. A., & Adam, A. M. (2021). Drivers of Stock Prices in Ghana: An Empirical Mode Decomposition Approach. Mathematical Problems in Engineering, 2021. doi:10.1155/2021/2321042
Hyndman, R., Koehler, A., Ord, J., & Snyder, R. (2008). Forecasting with exponential smoothing: the state space approach: books.google.com.
Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting : principles and practice (2nd edition. ed.). Melbourne: OTexts.
Undang-undang (UU) Nomor 28 Tahun 2022 tentang Anggaran Pendapatan dan Belanja Negara Tahun Anggaran 2023, (2022).
Iraman, E. (2023). Tax Revenue Forecasting: an Empirical Evidence Using Autoregressive-Distributed Lag (ARDL). Qeios. doi:10.32388/B21WPB
Juliannisa, I. A., Parianom, R., & Abrianto, A. (2023). Does GDP Affect Tax Revenue? EcceS: Economics Social and Development Studies, 10(1), 69-89. doi:10.24252/ecc.v10i1.33170
Peraturan Menteri Keuangan Nomor 242/PMK.03/2014 Tahun 2014 tentang Tata Cara Pembayaran Dan Penyetoran Pajak, (2014).
Koniagina, M. N. (2020). Forecast of budget revenues from taxes in the context of economy digitalization. Paper presented at the IOP Conference Series: Materials Science and Engineering. https://api.elsevier.com/content/abstract/scopus_id/85094196367
Li, J., Yang, X., Qian, T., & Xie, Q. (2023). The adaptive Fourier decomposition for financial time series. Engineering Analysis with Boundary Elements, 150, 139-153. doi:https://doi.org/10.1016/j.enganabound.2023.01.037
Mitchell O'Hara-Wild, R. H., Earo Wang (2023). R Package ‘fable’: CRAN. Retrieved from https://cran.r-project.org/web/packages/fable/fable.pdf
Montagnon, C. E. (2021). Forecasting by splitting a time series using Singular Value Decomposition then using both ARMA and a Fokker Planck equation. Physica A: Statistical Mechanics and its Applications, 567, 125708. doi:https://doi.org/10.1016/j.physa.2020.125708
OECD. (2013). Fiscal sustainability. In Government at a Glance 2013. Paris: OECD Publishing.
Saputra, M. I. F. A. (2023). Forecasting Value-Added Tax (VAT) revenue using Autoregressive Integrated Moving Average (ARIMA) Box-Jenkins method. Scientax: Jurnal Kajian Ilmiah Perpajakan Indonesia, 4(2), 205–218. doi: https://doi.org/10.52869/st.v4i2.568
Suprayogi, M. A. (2022). Model Double Exponential Smoothing Dalam Peramalan Penerimaan Pajak Pemerintah Pusat Indonesia. Jurnal Statistika dan Komputasi, 1(2), 83-92. doi:10.32665/statkom.v1i2.1233
Tang, L., Yu, L., Wang, S., Li, J., & Wang, S. (2012). A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting. Applied Energy, 93, 432-443. doi:https://doi.org/10.1016/j.apenergy.2011.12.030
Wang, D., Tian, C., Mao, J., & Chen, F. (2023). Forecasting coal demand in key coal consuming industries based on the data-characteristic-driven decomposition ensemble model. Energy, 282, 128841. doi:https://doi.org/10.1016/j.energy.2023.128841
Wang, X., Hyndman, R. J., Li, F., & Kang, Y. (2023). Forecast combinations: An over 50-year review. International Journal of Forecasting, 39(4), 1518-1547. doi:https://doi.org/10.1016/j.ijforecast.2022.11.005
Zhang, J., & Chen, X. (2024). A two-stage model for stock price prediction based on variational mode decomposition and ensemble machine learning method. Soft Computing, 28(3), 2385-2408. doi:10.1007/s00500-023-08441-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Yudi Aryoso Priandono, Machmudin Eka Prasetya

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.