Analisis Sentimen Pengungkapan Informasi Manajemen: Text Mining Berbasis Metode VADER


  • Emelia Aprodaid Marwa Universitas Kristen Satya Wacana
  • Ari Budi Kristanto Universitas Kristen Satya Wacana




: annual report; negative sentiment; positive sentiment; sentiment analysis


Financial statements present information related to the firm’s financial condition. However, there is various types of data are provided to help us in assessing and understanding the firm’s business condition. The most abundant firm-related data that are available are in the form of text. It can include annual reports, official websites, or even social media posts that may contain non-financial data. Nonfinancial information is also important to help the interpretation of financial information. The research aims to analyze the sentiment of management discussion and analysis included in the manufacturing company's annual report. The research sample is manufacturing companies listed on the Indonesia Stock Exchange (IDX) during the 2016-2020 period in a row. There are 102 companies or 510 research observations include in this research. This research uses a sentiment analysis technique based on a lexicon-based approach using the VADER method. Meanwhile, the sentiment analysis process will be assisted by the Orange Data Mining application. The results of the research show that positive disclosure is greater than negative sentiments. The pattern of sentiment for companies that are classified based on sector, company size (total assets and total sales), profitability (ROI), and liquidity (current ratio) shows relatively the same results. These results illustrate that company characteristics do not make a difference in the choice of word sentiment in manufacturing companies.


Download data is not yet available.

        Plum-X Analityc


Aljifri, K. (2008). Annual report disclosure in a developing country: The case of the UAE. Advances in Accounting, 24(1), 93–100.

Arvidsson, S. (2011). Disclosure of non-financial information in the annual report: A management team perspective. Journal of Intellectual Capital, 12(2), 277–300.

Barako, D. G. (2007). Determinants of voluntary disclosures in Kenyan companies annual reports. Determinants of Voluntary Disclosures in Kenyan Companies Annual Reports, 1(August), 113–128.

Baretta, V., Demartini C, M., Lico, L., & Trucco, S. (2021). A tone analysis of the non-financial disclosure in the automotive industry. Expert Systems with Applications.

Barus, R., & Maksum, A. (2011). Analisis pengungkapan informasi corporate social responsibility dan pengaruhnya terhadap return saham. Jurnal Akuntansi Dan Auditing Indonesia, 15(1), 83–102.

Camodeca, R., Almici, A., & Sagliaschi, U. (2018). Sustainability disclosure in integrated reporting: Does it matter to investors? A cheap talk approach. Sustainability (Switzerland), 10(12), 1–34.

Chakraborty, B., & Bhattacharjee, T. (2020). A review on textual analysis of corporate disclosure according to the evolution of different automated methods. Journal of Financial Reporting and Accounting, 18(4), 757–777.

Chen, C., Liu, C., Chang, Y., & Tsai, H. (2013). Opinion mining for relating subjective expressions and annual earnings in US financial statements. 29(3).

Deveikyte, J., Geman, H., Piccari, C., & Provetti, A. (2020). A Sentiment Analysis Approach to the Prediction of Market Volatility. 1–15.

Gandía, J. L., & Huguet, D. (2021). Textual analysis and sentiment analysis in accounting. 24(2), 168–183.

Goel, S., & Gangolly, J. (2012). Beyond the numbers: Mining the annual reports for hidden cues indicative of financial statement fraud. Intelligent Systems in Accounting, Finance and Management, 19(2), 75–89.

Peraturan Otoritas Jasa Keuangan Republik Indonesia nomor 29/POJK.04/2016 tentang laporan tahunan emiten atau perusahaan publik, 1 (2016).

Peraturan Otoritas Jasa Keuangan nomor 31 /POJK.04/2015 tentang keterbukaan atas informasi atau fakta material oleh emiten atau perusahaan publik, 1 (2015).

Hájek, P., & Olej, V. (2013). Evaluating sentiment in annual reports for financial distress prediction using neural networks and support vector machines. Communications in Computer and Information Science, 384, 1–10.

Hajek, P., Olej, V., & Myskova, R. (2014). Forecasting corporate financial performance using sentiment in annual reports for stakeholders’ decision-making. Technological and Economic Development of Economy, 20(4), 721–738.

Harymawan, I., Nasih, M., Ratri, M. C., Soeprajitno, R. R. W. N., & Shafie, R. (2019). Sentiment analysis trend on sustainability reporting in Indonesia?: Evidence from construction industry. 9(1), 617–630.

Hidaya, E. (2008). Pengaruh kualitas pengungkapan informasi terhadap hubungan antara penerapan corporate governance dengan kinerja perusahaan di bursa efek infonesia. 12.

Hutto, C.J. and Gilbert, E. (2014). VADER?: A parsimonious rule-based model for. Eighth International AAAI Conference on Weblogs and Social Media, 18.

Iglesias, Y., & Andriana, D. (2017). Pengaruh pengungkapan sukarela pada laporan tahunan terhadap kualitas laba pada perusahaan pertambangan. Jurnal ASET (Akuntansi Riset), 9(1), 187.

Kaur, A., & Gupta, V. (2013). A survey on sentiment analysis and opinion mining techniques. In Journal of Emerging Technologies in Web Intelligence (Vol. 5, Issue 4).

Kaur, F., & Bhatia, R. (2016). Sentiment analyzing by dictionary based approach. International Journal of Computer Applications, 152(5), 32–34.

Kearney, C., & Liu, S. (2014). Textual Sentiment In finance: A survey of methods and models. International Review of Financial Analysis, 33(Cc), 171–185.

Magnusson, C., Arppe, A., Eklund, T., Back, B., Vanharanta, H., & Visa, A. (2005). The language of quarterly reports as an indicator of change in the company’s financial status. Information and Management, 42(4), 561–574.

Maith, H. A. (2013). Analisis laporan keuangan dalam mengukur kinerja keuangan pada PT. Hanjaya Mandala Sampoerna Tbk. Jurnal EMBA, 1(3), 619–628.

Martikainen, M., Miihkinen, A., & Watson, L. (2019). Board characteristics and disclosure tone I . INTRODUCTION.

Mu?ko, P. (2021). Sentiment analysis of CSR disclosures in annual reports of EU companies. Procedia Computer Science, 192, 3351–3359.

Pagliarussi, M. S., Aguiar, M. O., & Galdi, F. C. (2016). Sentiment analysis em relatórios anuais de empresas brasileiras com ações negociadas na BM&FBovespa. BASE - Revista de Administração e Contabilidade Da Unisinos, 13(1).

Undang-undang Republik Indonesia nomor 40 tahun 2007 tentang perseroan terbatas, 76 (2007).

Sandoval, A., Gisbert, A., Haya, P., Guerrero, M., & Montoro, H. (2019). Tone analysis in Spanish financial reporting narratives. Proceedings of the Second Financial Narrative Processing Workshop (FNP 2019), September, 42–50.

Sharda, R., Delen, D., & Turban, E. (2018). Business Intelligence, Analytics, and Data Science.

Surata, P. A., & Astika, I. B. P. (2019). Reaksi Pasar Atas Pengungkapan Management Discussion and Analysis. 987–1011(1), 1–31.

Varghese, R., & Jayasree. (2013). A survey on sentiment analysis and opinion mining. 312–317.

Vinodhini, G., & Chandrasekaran, R. (2012). Sentiment analysis and opinion mining?: A survey international journal of advanced research in sentiment analysis and opinion mining?: a survey. International Journal of Advanced Research in Computer Science and Software Engineering, 2(6), 283–292.

Yap, R., & Widyaningdyah, U. A. (2009). Pengungkapan pertanggungjawaban sosial pada laporan tahunan perusahaan go publik di Bursa Efek Indonesia (studi empiris perusahaan high dan low profile). 1, 94–105.




How to Cite

Marwa, E. A. ., & Kristanto, A. B. (2022). Analisis Sentimen Pengungkapan Informasi Manajemen: Text Mining Berbasis Metode VADER. Owner : Riset Dan Jurnal Akuntansi, 6(3), 2973-2984.